I have attended MLconf 2018 in San Francisco. Since awesome speakers came from highly recognized industrial organizations, I can confidently say that MLconf can be a great place to see industrial trends and real-world "successful" use cases.
Surprisingly (and unsurprisingly), all of the following topics were covered in this one-day conference:
- Interpretability
- Saliency map for images vs. TCAV
- Large-scale satellite image data collection
- Make it available for developers
- Scalable ML with Amazon SageMaker
- Providing cheaper scalable solution on the cloud
- Train local states (i.e., partial models) on multiple GPU-enabled instances in parallel in the streaming, incremental fashion, and finally merge them into single shared state
- Reinventing k-means to make it scalable
- Uber's NLP efforts on building AI for riders and drivers
- TF-IDF + LSA vs. CNN
- ML and deep learning applications
- Geospatial processing
- Generative address to get a better understanding of geographical characteristics from satellite images
- Healthcare
- Baidu's efforts on DL for pathology with neural conditional random field
- Fake news detector "FakerFact"
- Geospatial processing
- Practical lessons on differential privacy
- and more!
My favorite session was Edo Liberty's one about Amazon SageMaker:
Finally attented Edo Liberty’s talk at #mlconf18 Just thrilled...his paper “Simple and deterministic matrix sketching” was awesome and literally changed my life.
— Takuya Kitazawa (@takuti) November 15, 2018
I have a special feeling for Edo because my master's research was strongly motivated by his paper; the paper eventually guided me to the world of scalable ML.
Hearing this session confirmed that I made the right decision by attending this year's MLconf. In fact, inside of SageMaker is still like a black box for me, but I can easily imagine that this out-of-the-box application is based on many advanced studies as Edo mentioned about approximation techniques for streaming data.
At the end of the event, the above tweet luckily won a free book:
you're a book winner! Go to the registration table and show us this tweet to claim one! @RevelliLisa @OkGoDoIt @mpbennett @benjapiex @atakinince @Prags92 @vivmarquez @brianspiering @thinkmariya @takuti @rani_ramkumar @plutoptincessz
— MLconf (@MLconf) November 15, 2018
Thanks organizers, I got "The Deep Learning Revolution"!
Overall, I really enjoyed this single-track, single-day conference thanks to the high-quality talks and well-organized program, as well as many networking opportunities. I personally believe ML, DL, and data science conferences should be more compact in terms of duration, number of sessions and attendees, just like MLconf, because the recent chaotic situation in those fields easily messes conference program; as an audience, too much input can sometimes be harmful to learning something truly valuable and important.
Share
Support (Thank you!)
See also
Author: Takuya Kitazawa
Takuya Kitazawa is a product developer, minimalistic traveler, ultralight hiker & runner, and craft beer enthusiast. Throughout my career, I have practically worked as a full-stack software engineer, OSS developer, technical evangelist, sales engineer, data scientist, machine learning engineer, and product manager. See my "now" page for more about what I am doing lately.
Opinions are my own and do not represent the views of organizations I am/was belonging to.
Popular articles