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ABSTRACT
Customer Data Platform (CDP) is an integrated customer database
operated by marketers. In the context of UMAP, this paper demon-
strates a real-world CDP with a special focus on (1) simple and de-
terministic text-based behavioral profiling technique, and (2) GUI-
based versatile tool for predictive analytics. Those functionalities
are designed for those who have no expertise in machine learning
and natural language processing, so the only thing marketers have
to do is clicking some buttons on UI. Meanwhile, their back-end
system ensures scalability and utility of the entire workflow from
data collection and management to prediction and visualization.
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1 BACKGROUND
A rapidly growing need for optimizing day-to-day marketing ac-
tivities has recently introduced a new concept named Customer
Data Platform (CDP). Earley [3] explained that CDP is a central-
ized place for creating customer profiles, implementing marketing
campaigns, and predicting customer behavior in connection with
a variety of data and signal sources. In fact, UMAP techniques po-
tentially play an important role in making deeper insights about a
large number of customers on CDP. However, the implementation
is not straightforward due to the end user’s limited technical ex-
pertise and complexity of real data. Therefore, this paper provides
a practical solution to the unique challenge by demonstrating a
commercially available CDP, Arm Treasure Data enterprise CDP1.
1https://www.treasuredata.com/
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2 DEMONSTRATION
Fig. 1 shows that the CDP stands on a datamanagement layer using
open-sourced big data processing tools such as Digdag2, Presto3,
Apache Hive and Hivemall [4]. These components guarantee scal-
ability and maintainability of the whole system in accordance with
the widely recognized best practices [6]. Plus, seamless, accurate,
and reliable integration with abundant third-party tools ensures
the reproducibility of data modeling as discussed in [5].
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Figure 1: Architecture of the demonstrated CDP. Underly-
ing solid data layer stores massive data on the cloud.

On the other hand, our web-based GUI application covers those
technical details with dedicated views for end users. Fig. 2 and
the rest of this section describe how marketers interact with their
customer data on the application. Most importantly, no coding is
needed at every stage as follows.

First, once CDP users specified desired data and signal sources,
unified customer profiles are systematically populated by aggre-
gating static attributes and time-stamped behavioral data. At the
same time, the system conducts simple, deterministic text-based
customer profiling on titles and descriptions of customer’s visited
web pages as needed. Consequently, customer records are enriched
with their interest words and affinity categories as seen in an in-
dividual’s profile view like Fig. 2 (a). Unfortunately, we cannot ex-
plain the detail of the profiling technique due to space limitations,
but it basically relies on (i) TF-IDF weighting for interest word ex-
traction in a similar way to [2], and (ii) a large word-to-category
mapping table generated from the Wikipedia corpus.

Subsequently, marketer defines a subset of customer profiles
(i.e., customer segment) as illustrated in Fig. 2 (b), with a flexible
2https://www.digdag.io/
3https://prestodb.io/
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Figure 2: End-to-end UMAP workflow implemented with the demonstrated CDP. Demo scenario follows this entire flow4.

choice of filtering conditions. The CDP then enables to implement
marketing campaigns on arbitrary customer segment. For exam-
ple, if you create a segment consisting of dormant customers, you
may want to send a special offer to them for customer reactivation.

Moreover, an advanced use case of the platform is to implement
look-ahead-based marketing campaigns by predicting unseen cus-
tomer’s behavior. In the previous example, it means that marketers
can preliminarily find out customers who are likely to become dor-
mant before they actually stop using your service. The predictive
analytics capability, namely predictive customer scoring, tech-
nically solves binary classification problem on customer profiles,
and the classifiers eventually give the probability of belonging to
a specific “target segment” (e.g., “set of customers who have not
logged in for a year” for dormant customer prediction). The prob-
abilities are finally visualized on a dashboard view as Fig. 2 (d) with
some auxiliarymetrics such as evaluation accuracy and feature im-
portance. In the end, marketers can easily and effectively perform
predictive marketing campaigns.

As the scenario above suggests, the CDP simply requires users
to click buttons on UI at each step of customer profiling, segmen-
tation, predictive analytics, and campaign execution. It should be
noted that, while practitioners normally spend a huge amount of
time on feature engineering, the predictive analytics functional-
ity makes the task semi-automated by suggesting features as cap-
tured in Fig. 2 (c). The process internally takes a heuristics-based
approach with single-column profiling [1] on customer attributes.

4A supplemental screencast is available at: https://youtu.be/iwbqb5D2uPw

3 DISCUSSION
As an example of productized UMAP solution, we have demon-
strated the enterprise-grade implementation of CDP that provides
a solid data layer and marketer-friendly GUI-based application.
From an algorithmic point of view, the CDP employs limited con-
ventional UMAP techniques like TF-IDFweighting and binary clas-
sification to make the application as explainable, scalable, and ac-
curate as possible for non-expert users. On that point, future chal-
lengesmight be related to a field of interactive and explainable user
modeling e.g., based on topic modeling and clustering.
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